
ORIGINAL ARTICLES

Distinguishing Environmental Impacts of Household Food-Spending
Patterns Among U.S. Demographic Groups

Joe F. Bozeman III,1,*,{ Weslynne S. Ashton,2 and Thomas L. Theis1,{

1Institute for Environmental Science and Policy, University of Illinois at Chicago, Chicago, Illinois.
2Stuart School of Business, Illinois Institute of Technology, Chicago, Illinois.

Received: December 21, 2018 Accepted in revised form: April 15, 2019

Abstract

The food–energy–water (FEW) nexus is a focal point in research due to its impacts on ecosystem services that
sustain human life. Despite this, FEW studies have not produced enough policy-relevant insights, particularly
addressing differences across demographic groups with sufficient data and analysis. We addressed this research
gap by integrating socioeconomic status (SES) with pertinent life cycle assessment findings to explore food-
consumption impacts across three of the largest demographic groups (Black, Latinx, White) in the United
States. Looking at five food groups—vegetables, fruits, protein, dairy, and grains—food-consumption impacts
per dollar spent (FCI$) were calculated. Results show that Latinx and Black household food purchasing and
consumption behavior has greater impact on cradle-to-farm-gate environmental resources (land, greenhouse gas
[GHG], water) for every dollar spent compared with White households. Higher FCI$ rates for Latinx and Black
households are attributable to relatively low average household incomes (i.e., lower SES), which is associated
with the purchase of more cheaper, energy-dense foods. Addressing food access issues for demographic groups
of lower SES could facilitate the purchase of less environmentally-intense foods, thereby conserving envi-
ronmental resources and mitigating GHG emissions. Specifically, different messaging relevant to particular
demographic groups may be necessary to encourage healthier and lower-impact dietary choices. This study’s
results provide practitioners, policy makers, and researchers policy-relevant data for issues involving the
environment, with interesting discussion on implications for racial equity and human health.
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Introduction

The food–energy–water (FEW) nexus is a focal point
in research due to its dynamic impacts on ecosystem

services that sustain human life (Wichelns, 2017; Dai et al.,
2018; Zhang et al., 2018). That is, food systems utilize vital
natural resources through socioecological interactions
(Storm et al., 2015; Vallejo-Rojas et al., 2016); climate
change drives more frequent and intense agroclimatic events
which affect food availability and quality (Zucali et al., 2017;
Rötter et al., 2018); and human health outcomes are affected
by access to healthy food options and clean water (Donley
and Gualtieri, 2015; Ahola et al., 2016; Dieter and Tuttle,
2017; Karabulut et al., 2018). It is also understood that
food consumption is integral to the FEW nexus (USGCRP,
2018), and food-consumption patterns in the United States
tend to vary based on factors such as race and income level
(Kirkpatrick et al., 2012).

Researchers have made progress in establishing ap-
proaches that are intended to develop policy-relevant insights
for the FEW nexus. One such approach has been to perform a
broad analysis of FEW interactions to understand risks and
impacts (Al-Saidi and Elagib, 2017; Kaddoura and Khatib,
2017; Kurian, 2017; Amorim et al., 2018; Zhang et al., 2018).
However, many FEW nexus analytical tools require exten-
sive data while lacking synergistic capabilities (Kaddoura
and Khatib, 2017). Furthermore, many FEW nexus studies
often are ostensible in their nexus integration or cross-
disciplinary claims, in that their methodological approaches
fall short of facilitating nexus studies that employ core ana-
lytical techniques from more than one scientific field (Al-
Saidi and Elagib, 2017; Dai et al., 2018; Zhang et al., 2018).
Specifically, the broad analysis of Al-Saidi and Elagib (2017)
had three pertinent findings: (1) FEW nexus issue prioriti-
zations seem to be left to case studies or to the predilection of
policymakers, (2) there needs to be increased crosslinking of
FEW issues, and (3) establishing a FEW nexus governance
structure is the missing link to the nexus debate. Findings
from the broad analysis by Dai et al. (2018) share this sen-
timent, in that they state there is a clear need to improve our
ability to classify and compare FEW nexus approaches to
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increase focus on nexus governance and implementation.
Similarly, in a study of eight FEW nexus modeling ap-
proaches, Zhang et al. (2018) found that system performance
evaluation was lacking, and that nexus-specific assessment
metrics and quantitative approaches need to be developed.
These are some of the reasons why developing policy-
relevant insights that influence the environment, racial eq-
uity, and human health for the FEW nexus for example are a
scientific challenge (Scanlon et al., 2017). The present study
attempts to address this scientific challenge by establishing a
FEW nexus quantitative approach that considers the envi-
ronment, racial equity, and human health to varying extents.

Another popular approach to exploring policy-relevant
FEW insights has been life cycle assessment (LCA). LCA
studies are more specific than broad analyses and tend to
yield quantitative, FEW impact data for some group of
products. The boundaries of such studies begin at the cradle
(often farm) and end at the farm gate (Monti et al., 2009; Nhu
et al., 2016; Tabatabaie and Murthy, 2016), retail and food
transport (Mundler and Rumpus, 2012; Yang and Campbell,
2017), or end-of-life/food waste disposal (Nayal et al., 2016;
Eriksson and Spångberg, 2017). Quantitative results from
these often come in the form of environmental impacts, such
as land use, greenhouse gas (GHG) emission, air contami-
nation, energy use, and water use estimations. For example, a
study on U.S. beef production found that cultivating a single
cow from cradle-to-farm-gate results in the GHG emission of
5,310 kilograms (kg) of carbon dioxide equivalents (CO2e)
and uses 33,000 square meters (m2) of land on average
(Pelletier et al., 2010). Another cradle-to-farm-gate study on
U.S. beef production found water was used at rates between
2,015 and 2,925 liters (L) per kg of beef produced (Rotz et al.,
2013). Data from these kinds of studies can be converted into
consistent units and aggregated to assess overall cradle-to-
farm-gate FEW impacts (Tilman and Clark, 2014). Despite
the quantitative information that is derived from LCA stud-
ies, they have historically failed to consider the full diversity
of ecosystem services and their socioecological dynamics
(Pavan and Ometto, 2018).

The U.S. government generates policy-relevant data by
estimating land, energy, and water impacts for the entire U.S.
food system. For instance, 52% of the total U.S. land area is
used for agricultural activities that supply food for human
consumption, including cropland, grassland pasture, forest-
land graze, and farm road uses (USDA ERS, 2014). This
share is down 11% from what it was in 1949 due to declines in
cropland and grazed forestland uses. Cradle-to-grave food
system activities—which include cradle-to-farm-gate activ-
ities but extend to food distribution, preparation, and end-of-
life/food waste disposal activities—account for about 16% of
the national energy budget (USDA ERS, 2010). Also, agri-
culture accounts for about 80% of the nation’s total con-
sumptive water resources through ground and surface water
use (USDA ERS, 2018). These findings suggest that reduc-
tions in FEW impacts and effective policy development
could reduce burdens on natural resources.

Socioeconomic status (SES) studies have also attempted to
produce relevant policy insights for FEW data. These studies
tend to utilize existing government or institutional data
(Ogden et al., 2010; Snyder and Dillow, 2012). In doing so,
these studies have made associations that link SES and the
FEW nexus. For example, socioeconomic inequalities have

been linked to diet quality through disparate food choice and
purchasing behaviors (Pechey and Monsivais, 2015). Other
studies have focused on associations between SES indicators,
food choice, and human health, generalizing that those with
higher SES—for example, social groups with more income
than other groups—exhibit food purchasing habits that lead
to the acquisition of healthier food items—such as foods with
higher fiber, higher protein, and lower sodium content (Ap-
pelhans et al., 2012; Pechey et al., 2013; Pechey and Mon-
sivais, 2016).

Those with lower SES—for example, social groups with
less income than other groups—tend to choose food items
with more energy density in attempt to ward off feelings of
insufficiency and scarcity (Cheon et al., 2018). Studies like
these can produce policy-relevant data since they tend to be
methodologically linked with the kinds of institutions that
develop or enforce public policy. For instance, U.S. SES data
primarily comes from the Bureau of Labor Statistics, a sub-
sidiary of the U.S. Department of Labor, which develops and
enforces public policy. This differs from studies that may use
SES data from nongovernmental sources—for example, us-
ing SES data from surveys administered by a research group
with no government affiliations. Nevertheless, there has been
no U.S. study we are aware of that links FEW impacts to SES
across demographic groups.

In the present study, we integrate SES with pertinent LCA
findings to produce policy-relevant data and insights for the
environment as it relates to U.S. demographics. This ap-
proach allows us to explore the central question driving the
present study: How do food consumption and spending
choices of the three largest U.S. demographic groups (Black,
Latinx, White) correlate with FEW impacts (land, GHG,
water)? We begin answering this question by describing our
methodology in the Experimental Protocols section, followed
by a detailed explanation of our data in the Results section.
Then, we discuss our findings and study limitations in the
Discussion section. We conclude by recapping major study
components and implications in the Summary section.

Experimental Protocols

Figure 1 shows the relationship between key study com-
ponents. We provide methodology for each in the following
subsections. First, we explain our approach for using LCA-
derived FEW impact findings to produce cradle-to-farm-gate
FEW impacts for basic food items. Next, we explain our
methodology for combining FEW impacts with average food
intake to produce food-consumption impacts (FCIs) across
demographics. We then explain our methodology for align-
ing food-spending data with FCIs to produce FCIs per dollar
spent (FCI$) on SES food groups across demographics.
Lastly, we describe the methodology for our statistical
analysis.

Our principal equation for calculating FCI$ is:

FCI$L=G=W¼
Pn

1 xn � cL=G=W fn

$SES Food Group

(1)

where n denotes the food item of a particular SES food group,
xn denotes the annual consumption of food item n in units of
kg per year (kg/year), and $SES Food Group denotes the annual
amount of money spent on a particular SES food group in
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units of United States Dollars per year (USD/year). This
equation is modular to allow for land (L), GHG (G), and
water (W) calculations using the same principal equation.
That is, cLfn denotes the land use factor per kg of food item n
produced in units of m2/kg or L-1, cGfn denotes GHG emis-
sions for kg of food item n produced in units of kgCO2e/kg or
L-1, and cwfn denotes the water use factor per kg of food item
n produced in units of L/kg or L-1. These values and calcu-
lations are mean estimations. Equation (1) components are
further explained in this Experimental Protocols section.

Cradle-to-farm-gate FEW impacts for basic food items

A large group of basic food items were identified and ag-
gregated to represent the expanse of food commodities con-
sumed in the United States. Americans consume over 7,000
different kinds of foods that make up more than 500 food
commodities, and basic food items make up the constituents
of these food commodities (USEPA FCID, 2018). After re-
viewing LCA study methodological approaches and data
availability bounds of key FEW sources, a cradle-to-farm-
gate boundary was selected (Bozeman et al., 2019).

LCA findings were originally compiled for 24 basic food
items that effectively represent the bulk of what is consumed.
These 24 basic food items were selected by first compiling a
list of basic foods, meaning that they were not a derivative of
other foods (USEPA FCID, 2018). For instance, sugar—a
nutrient that exists naturally in fruits–is not a basic food item
once it is manufactured in a way that yields a derivative sugar
product such as refined sugar. This is why sugar is not listed
as a basic food item although it is naturally present in many of
the basic food items identified in the present study. We then
performed an exhaustive search for cradle-to-farm-gate land,
GHG, and water data for each basic food item chosen. This
search utilized findings primarily from centralized databases
maintained by the Food and Agriculture Organization,
OpenLCA, Barilla Center for Food and Nutrition, and the
United States Department of Agriculture; and supplemented
by literature reviews. Basic food items that had cradle-to-
farm-gate land, GHG, and water data available were aligned
with USEPA FCID (2018) food commodities to estimate the
expanse of foods consumed in the United States (Bozeman
et al., 2019).

The food groups relevant to the present study were
identified as vegetables, fruits, protein food, dairy, and
grains. The oil food group was excluded since there were no
socioeconomic spending indicators for this category, mak-
ing it 23 basic food items that were ultimately incorporated.
Table 1 shows the mean FEW impacts for these five food
groups [i.e., cL=G=W fn of Eq. (1)].

We also explored food-related retail and food acquisition
transport impacts to assess the importance and applicability
of life-cycle GHG emissions beyond the cradle-to-farm-gate
study boundary. The distance that food is transported from
the farm or production site is known as food miles, which can
account for the relatively long distances that many food
items travel before reaching consumers (Coley et al., 2011;
Kissinger, 2012). Food miles and their life cycle GHG emis-
sion estimations vary country to country and region to region
largely due to differences in study framing and dynamic food
market conditions (Rothwell et al., 2016; Mohareb et al.,
2017). These regional and country-level variances make as-
sociated food–mile estimations difficult to interpret and frame.
Furthermore, research suggests that food miles deriving from
U.S. activities represent only a small portion of life cycle GHG
emissions (Weber and Matthews, 2008). We have therefore
excluded food miles from the present study.

FCIs of SES foods across demographic groups

As the focus of this study is to explore how FCIs correlate
with food-spending patterns across demographic groups, we
identified associative SES indicators that encompass useful
food expenditure data. Eight indicators were identified for the
purposes of understanding FEW impact correlations based on
the review of data from U.S. Government sources and
their affiliates (USDA, 2016a; USBOLS, 2017; ACS, 2018).
Table 2 shows a listing of the SES indicators and their cor-
relation with FCIs.

The U.S. population was estimated at 326,971,407, with
the Black demographic at 13.3% of the total population, the
Latinx demographic at 17.8%, and the White demographic at
61.3% (USCB, 2017, 2018). Altogether, Black, Latinx, and
White demographic groups represent 92.4% of the U.S.
population. The other 7.6% of the population—such as Na-
tive American, Pacific Islander, and Asian—had food intake

FIG. 1. Major components
for the present study’s ana-
lytics and data relations,
showing that annual FCI$
rates are comprised of three
key components. FCI$, food-
consumption impacts per
dollar spent.
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data that were aggregated as if they were a single de-
mographic category (USEPA FCID, 2018). This ‘‘other’’
demographic group was not included in the present study
since there was no disaggregated food intake data available.
In other words, Native American, Pacific Islander, and Asian
populations have very different food-consumption profiles
and cannot be meaningfully analyzed as a single group. As
such, analysis of this other demographic group would not
yield meaningful insights (Bozeman et al., 2019). Further-
more, the Latinx demographic—that is, Mexican American
and other Hispanic demographic categories as shown in
the EPA FCID database (USEPA FCID, 2018)—is termed
‘‘Latinx’’ in effort to align with modern intersectional, gender
nonbinary, social terminology (Garcı́a, 2018). Race refer-
ence information from the Census data can be found in the
Appendix section (Appendix Table A1).

SES indicator data, in its original form, are linked to the
Average Number in Consumer Unit value, which differs
between demographic groups. The Average Number in
Consumer Unit value is an average number of people per
household (USBOLS, 2018). For the year 2017, Black and
White households have equal values with an average of 2.4
people per household, while Latinx households have a higher

average at 3.2. The U.S. average is 2.5 people per household
(USBOLS, 2017). These points carry particular importance
when SES indicator values are being assessed directly and not
as ratios or percentages.

Table 3 shows the per-household average food intake and
FCIs for SES food groups across demographics (Black, La-
tinx, White). The average intake rates (xn) for each food item
of a SES food group (grains, protein, dairy, fruits, vegetables)
were multiplied by their corresponding FEW impact mean
(cL=G=W fn) and then summed to calculate per-capita FCIs for

each SES food group [i.e.,
Pn

1

xn � cL=G=W fn of Eq. (1)]. Next,

these FCI rates were multiplied by 2.4 people per household,
which is the present study’s constant value for per-household
analyses. This allows for differences in demographic food-
consumption patterns and FCIs to be assessed on uniform
terms. That is, it facilitates sociodemographic analysis of
economic indicators since these indicator values are provided
as per household values and not per capita.

The demographic group with the highest SES food group
intake rate does not always have the highest FCIs across land,
GHG, and water categories. Relatively high intake rates of a
particular food item can contribute to a higher FCI in one or

Table 1. Annual Cradle-to-Farm-Gate Food–Energy–Water Impacts for Basic Food Items

Food group Food item

FEW impact (cL=G=W fn)

Land GHG Water

m2

kg or L
kgCO2e
kg or L

L
kg or L

Mean Mean Mean

Vegetables Broccoli 0.815 0.381 149
Green Beans 2.721 2.239 212
Lettuce 0.333 0.256 110
Tomatoes 0.111 0.28 43
Potatoes 0.204 0.35 239
Group 0.837 0.701 151

Fruits Apples 0.219 0.455 66
Oranges 0.553 0.319 85
Cherries 1.286 0.45 3
Strawberries 0.164 0.55 130
Grapes 0.456 0.226 542
Blueberries 1.395 0.776 801
Group 0.679 0.463 271

Protein Soy Beans 2.857 0.46 520
Beef 45.452 15.308 2,470
Eggs 0.091 4.91 4
Pork 19 11.5 10,100
Poultry 25.4 1.248 104
Almonds 2.563 3.125 62
Walnuts 2.097 1.721 18
Tilapia 0 3.1 11,761
Group 12.183 5.172 3,130

Dairy Milk 0.241 0.951 5

Grains Rice 6 2.41 1,163
Maize 0.932 0.655 760
Wheat 2.826 0.7 1,536
Group 3.253 1.255 1,153

These FEW impacts are adapted from Bozeman et al. (2019), where bolded values represent aggregate FEW impact means for each food
group.

FEW, food–energy–water.
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more categories even when that demographic has a lower
SES food group intake value. For example, Table 3 shows
that White households tend to have the largest water FCI in
the fruits food group despite having the lowest average
household food intake compared with Black and Latinx
households. This is partly due to White households having the

highest within-demographic intake rate of grapes (Appendix
Table A2). This particular food item has a relatively high
water use rate (542 L/kg), but has low land and GHG rates
compared with other within-food group food items (refer to
Table 1). When taken together to calculate FCIs, the grapes
food item intake and FEW impact rates for White households
contribute to Whites having the largest water FCI in the fruits
food group despite consuming fruits at the lowest household
rate. This same dynamic occurs for the White demographic in
the protein food group for GHG and water, and for the Latinx
demographic in the grains food group for land and GHG
(Table 3).

Food spending for SES foods across demographic
groups

Table 4 shows the 2017 annual expenditure values. The
data year was established as 2017 since it was the most recent
SES dataset available. SES indicator values were adjusted to
allow for meaningful correlations with per-household FCIs.
The term adjusted denotes that the SES indicator values have
been proportionally altered to make the average number of
people per household value equal across each demographic
group at 2.4. This means that corresponding Latinx SES in-
dicator values are 75% of their unadjusted values, U.S. av-
erage values are 96% of their unadjusted values, and Black
and White SES indicator values were unchanged.

Food spending (Table 4) and FCIs (refer to Table 3) are
major study components of FCIs per dollar spent on SES
foods (FCI$) across demographic groups. Effectively, FCI$

Table 3. Annual Per-Household Food Group Intake and Food-Consumption Impacts Across

Demographic Groups

SES food group Demographic

Average food intake (xn)

FCI (
Pn

1

xn � cL=G=W fn)

Land GHG Water

kg or L/year m2 kgCO2e L

Vegetables Black 133.38 37.87 47.85 20291.97
Latinx 147.66 40.34 54.00 20357.32
White 176.58 50.09 64.29 24972.12
U.S. 166.82 47.23 60.70 23705.10

Fruits Black 180.45 83.60 64.87 27983.91
Latinx 195.22 88.75 71.09 26939.65
White 163.96 77.37 60.61 32949.06
U.S. 170.51 79.87 62.71 28049.54

Protein Black 192.30 3658.77 1068.45 494023.51
Latinx 185.32 3461.54 1068.73 480977.41
White 184.77 3065.81 1125.79 504161.87
U.S. 184.70 3533.23 1094.19 500820.03

Dairy Black 166.17 39.96 174.48 889.00
Latinx 244.93 58.91 257.18 1310.37
White 265.94 63.96 279.24 1422.80
U.S. 248.02 59.65 260.42 1326.92

Grains Black 171.99 383.02 139.34 200058.08
Latinx 175.13 416.24 152.66 204059.53
White 180.25 413.70 141.98 219148.90
U.S. 178.29 415.84 146.01 213937.83

Bolded values denote the highest food intake and FCI values for each SES food group across demographics. The U.S. category includes
all demographic groups, including Black, Latinx, and White households.

FCI, food-consumption impact.

Table 2. Socioeconomic Status Indicators

SES indicator
Correlation with FEW impacts

and SES food groups

Average number in
consumer unit

Average number of persons in con-
sumer unit (typically households)

Average AEA Average annual household spending
across all categories

Average AEAF Average annual household spending on
food only

Cereals and cereal
products

Represents spending for the Grains
food group

Meats, poultry,
fish, and eggs

Represents spending for the Protein
food group

Fresh milk and
cream

Represents spending for the Dairy
food group

Fresh fruits Represents spending for the Fruits
food group

Fresh vegetables Represents spending for the
Vegetables food group

Bolded terms highlight SES food group designations from
Table 1.

AEA, annual expenditures: all; AEAF, annual expenditures: all
food; SES, socioeconomic status.
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is an annual ratio of either land (m2), GHG (kgCO2e), or
water impacts (L) for every dollar spent in a SES food
group.

Statistical analysis of food-related SES indicators

Analysis of variance (ANOVA) was used to analyze the
significance level (i.e., p-value) of mean group differences
between Blacks, Latinx, and White households for SES in-
dicators. By calculating the F-statistic and assessing signifi-
cance level for each aforementioned SES indicator
(Larson, 2008; Tabachnick and Fidell, 2013), we were able to
determine whether there were meaningful differences be-
tween demographic group mean values. The entire U.S.
population, classified as a single group, was excluded from
within-demographic ANOVA analysis since it is an aggre-
gation of Black, Latinx, White, and other demographic
groups.

ANOVA results tell us whether there is an overall differ-
ence between our three demographic groups. The overall
difference between these groups were considered very sig-
nificant if the p-value was 0.010 or below (i.e., p = 0.010 or
p = 0.001). That is, if the p-value was found to be 0.010 or
lower there was very high confidence that the mean group
differences between demographics were meaningful and not

due to chance, indicating a confidence interval (99% CI) or
higher.

Results

Statistical significance of SES indicators

Table 5 shows the significance level for all of the identified
SES indicators except for the Average Number in Consumer
Unit indicator. This indicator is different from the others
since it does not have a sampling error associated with it
(USBOLS, 2017). The remaining seven indicators were an-
alyzed for statistical significance. Five of the seven have a
p-value of 0.001. The grains and protein indicators have a
p-value of 0.010. All indicator p-values best the standard
0.050 p-value threshold for significance (Rice, 1989). This
means that all SES indicators are very significant with a CI of
99% or higher. In other words, within-demographic mean
differences (i.e., mean differences of SES indicators across
demographic groups) are unlikely to exist by chance and are
influenced by demographic group identification.

Broad expenditure analysis

Broad expenditure characteristics were analyzed to un-
derstand how different demographic groups tend to spend
money. In Fig. 2, the SES category represents the ratio of
dollars spent on all food (AEAF) to the total amount of USD
spent on all expenses (AEA) as a percentage: Expensed for
All Food (i.e., ratio of average food expenditures against total
expenditures). The AEA category encompasses spending for
all living expenses (e.g., rent/mortgage, household opera-
tions, health care, and clothing expenses), whereas AEAF
encompasses all food expenses (e.g., food purchased for the
household and away from home). These results show that
Latinx households use the highest proportion of their total
expenses on food spending compared with Black and White
households. Note that this holds even after correcting for the
larger average size of Latinx households.

Figure 3 shows the percentage of AEAF dollars spent on
SES foods: grains, protein, dairy, fruits, and vegetables food
groups. These results show that Latinx households tend to
spend the highest proportion of food expenditures in the dairy,
fruits, and vegetables categories, whereas Black households
are shown to spend the highest proportion in grains and protein
categories on average. These results also indicate that the
highest proportion of AEAF is expensed on the protein food
group compared with grains, dairy, fruits, and vegetables. It is
also interesting to note that while White households spend the
largest dollar amounts in each of the food categories, these
expenditures represent a relatively small proportion of their
entire expenditures. Supplemental income data can be found
in the Appendix Section (Appendix Table A4).

Food intake patterns across demographic groups

Food intake was assessed to better understand how eating
patterns differ between demographic groups (Fig. 4). Black
households are shown to consume the largest ratio of food
from the protein food group (23%) compared to proportional
intakes for Latinx (19%) and Whites (19%) households on
average. The same is true for grains.

Black and Latinx households share similar intake patterns
for two food groups. Results show that these demographics

Table 4. Adjusted, Annual Socioeconomic

Status Indicator Values Across Demographics

SES indicator category Demographic Mean ($,USD)

Average AEA Black 43117.00
Latinx 36892.50
White 65019.00
U.S. 57657.60

Average AEAF Black 5422.00
Latinx 5475.00
White 8202.00
U.S. 7419.84

Grains Black 147.00
Latinx 145.50
White 179.00
U.S. 168.96

Protein Black 874.00
Latinx 801.75
White 933.00
U.S. 906.24

Dairy Black 103.00
Latinx 125.25
White 151.00
U.S. 141.12

Fruits Black 208.00
Latinx 260.25
White 326.00
U.S. 301.44

Vegetables Black 170.00
Latinx 232.50
White 286.00
U.S. 263.04

Bolded values denote the highest within-demographic food group
expenditure. The U.S. category includes all demographic groups,
including Black, Latinx, and White households. Expenditures for
the five food groups do not approximate total AEAF since spending
on other food groups are not included.
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consume the same proportion of fruits (21%) and vegetables
(16%). In the case of fruits, White households fall below
Black and Latinx households at 17%; and for vegetables,
White households are shown to have the highest proportion
across demographic groups at 18%.

The largest disparity in proportional food intake across
demographic groups is shown in the dairy food group. Results
show that Black households have a relatively low propor-
tional intake of dairy (20%). Furthermore, results show that
Latinx (26%) and White (27%) households tend to consume

higher ratios of dairy than Black households. This higher
proportion of dairy intake for Latinx and White house-
holds reduce the intake ratios of their other food groups,
respectively.

Ratios of food intake lend insight into food-consumption
patterns, but FCIs more so correlate with the amount of food
consumed. That is, kilograms of food consumed has positive
proportionality with FCIs: the more food that is consumed,
the more aggregate environmental resources that tend to be
used to produce such food (refer to Table 3).

FCI$ across demographic groups

We divided the annual FCIs by corresponding SES food
spending to find impact expense rates for each demographic
group [refer to Eq. (1)]. Figure 5 shows that protein has the
highest aggregate land impacts for FCI$ categories across all
demographic groupings—the most environmentally intense
food group. Latinx households have the highest land impact
rate for protein at 4.32 m2

USD
. Latinx households also have the

highest land FCI$ for grains (2.86 m2

USD
) and dairy (0.47 m2

USD
),

while Black households have the highest FCI$ for fruits and
vegetables at about 0.40 m2

USD
and 0.22 m2

USD
, respectively.

When we aggregate the values for all land FCI$ categories,
we find that Latinx households yield the highest rates of land
impacts for each dollar spent at 8.16 m2

USD
. This suggests that

Latinx households have a greater impact on land for every
dollar spent compared to Black and White households.
Nonetheless, aggregate land FCI$ values for Latinx and
Black households are much closer in value than they are to
White aggregate land FCI$ values.

Figure 6 shows a household comparison of GHG FCI$
across demographic groupings. These results indicate that
dairy has the highest aggregate GHG impacts for FCI$

Table 5. Statistical Significance of Socioeconomic Status Indicators Per Household

SES indicator category Demographic Sample error N F-statistic p

AEA Black 1100.26 17,324 172.96 0.001
Latinx 1244.13 17,630
White 775.98 95,395

AEAF Black 199.93 17,324 85.41 0.001
Latinx 266.85 17,630
White 109.35 95,395

Grains Black 9.34 17,324 4.79 0.010
Latinx 12.50 17,630
White 5.06 95,395

Protein Black 42.03 17,324 5.51 0.010
Latinx 51.29 17,630
White 19.34 95,395

Dairy Black 6.46 17,324 19.55 0.001
Latinx 9.92 17,630
White 3.56 95,395

Fruits Black 14.61 17,324 22.89 0.001
Latinx 20.95 17,630
White 8.04 95,395

Vegetables Black 11.42 17,324 27.85 0.001
Latinx 19.55 17,630
White 7.19 95,395

‘‘N’’ denotes sampling size. Supplemental sampling size data can be found in the Appendix section (Appendix Table A5).

FIG. 2. Household comparison of the percentage of AEA
spent on AEAF, where ‘‘**’’ denotes p = 0.001 (CI of
99.9%). Broad expenditure SES category names are located
on the horizontal axis. AEA, annual expenditures: all; AEAF,
annual expenditures: all food; CI, confidence interval.
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categories across all demographic groupings. Results also
show that Latinx households have the highest GHG impact
rate for grains at 1.05 (kg CO2eq

USD
), protein (1.33 kg CO2eq

USD
), and

dairy (2.05 kg CO2eq
USD

). Black households are again shown to
have the highest FCI$ for fruits and vegetables at 0.31 kg CO2eq

USD
and 0.28 kg CO2eq

USD
, respectively. As is the case for land FCI$,

results show that Latinx households have a greater GHG
impact for each dollar spent at 4.94 kg CO2eq

USD
when we aggre-

gate the values for GHG FCI$s.
Figure 7 shows a household comparison of water FCI$

across demographic groupings. Grains show the highest ag-
gregate water impact across all FCI$ groupings here. Within

the grains category, Latinx households have the highest water
use rate at 1402.47 L

USD
. Latinx households also display the

highest FCI$ rates for protein (540.37 L
USD

) and dairy (10.46
L

USD
). As is the case for land and GHG FCI$s, we find that

Latinx households have the highest water impacts at 2203.92
L

USD
when we aggregate the values for water FCI$ categories.

This suggests that Latinx households impact more water re-
sources for every dollar spent on food compared to Black and
White households. Furthermore, as is the case for aggregate
land FCI$, aggregate water FCI$ values for Latinx and Black
households are much closer in value than they are to White
aggregate water FCI$ values.

FIG. 3. Household comparison of
broad expenditure SES categories
and their corresponding demo-
graphic group as a percentage of
expenditures, where ‘‘*’’ denotes
p = 0.010 (CI of 99%) and ‘‘**’’
denotes p = 0.001 (CI of 99.9%).
Broad expenditure SES category
names are located on the hori-
zontal axis.

FIG. 4. Food intake of food
groups for each demographic. Food
intake data comes from Table 3.
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Land, GHG, and water FCI$ results show that Latinx
household food purchasing and consumption tends to affect
the environment the most for every dollar spent compared to
Black and White households, with aggregate FCI$ rates of
8.16 m2

USD
for land, 4.94 kg CO2eq

USD
for GHG, and 2203.92 L

USD
for

water. Black households closely follow Latinx households
with aggregate FCI$ rates of 7.80 m2

USD
for land, 4.46 kg CO2eq

USD
for GHG, and 2188.72 L

USD
for water, whereas White house-

holds display the lowest with 5.13 m2

USD
for land, 4.26 kg CO2eq

USD
for GHG, and 1962.47 L

USD
for water.

Overall results also show that protein represents a rela-
tively large proportion of aggregate land FCI$ rates, dairy for
GHG, and grains for water compared to other food groups
across demographic groupings. This suggests that reducing

food spending and consumption of environmentally intense
foods (i.e., food items that have the highest FEW impacts or
FCIs) within the protein and grain food groups could result in
the highest conservation of cradle-to-farm-gate land and
water resources, whereas reducing dairy food spending and
consumption could mitigate the most GHG emissions. Please
see the Appendix section for detailed numerical values
(Appendix Table A3).

Discussion

The present study addresses an important research gap by
correlating food spending and FEW impacts with demo-
graphics. In doing so, we have established an innovative
methodology that integrates SES and FEW LCA findings.
This approach has produced statistically significant FCI$
rates for U.S. Black, Latinx, and White households. One of
our major findings is that Latinx household food purchasing
and consumption behavior tends to affect the physical envi-
ronment the most for every dollar spent compared to Black
and White households. Yet, Latinx and Black household
FCI$ patterns match closely. We sought to uncover why these
patterns emerge, and then developed policy suggestions
based on these insights.

Our results suggest that Latinx and Black households are
spending less on food overall but purchasing higher propor-
tions of environmentally intense food items in the protein,
dairy, and grain food groups compared to White households.
Recent research suggests that individuals from lower SES
groups tend to choose food items with more energy density in
attempt to ward off feelings of insufficiency and scarcity
(Cheon et al., 2018). Specifically, these feelings of insuffi-
ciency and scarcity tend to result in the purchasing of lower-
cost, high-calorie foods compared to fruits and vegetables.
These feelings also tend to lead to the consumption of in-
creased food quantities during meal and snack times.

Latinx and Black households earn less on average than
White households, and as such have lower purchasing power.
Alkon et al. (2013) found that food cost was the primary

FIG. 5. Per-household comparison of annual land FCI$
across demographic groupings as a number of square meters
of land impact per dollar rate. FCI$ categories are located on
the horizontal axis. The bolded value denotes the demo-
graphic with the highest aggregate land FCI$.

FIG. 6. Per-household comparison of annual GHG FCI$
across demographic groupings as a number of kilograms of
carbon dioxide equivalent emitted per dollar rate. FCI$ ca-
tegories are located on the horizontal axis. The bolded value
denotes the demographic with the highest aggregate GHG
FCI$. GHG, greenhouse gas.

FIG. 7. Per-household comparison of annual water FCI$
across demographic groupings as number of liters per dollar.
FCI$ categories are located on the horizontal axis. The
bolded value denotes the demographic with the highest
aggregate water FCI$.
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barrier to healthy food access in low-income areas in the
cities of Oakland, California, and Chicago, Illinois. Other
studies support this sentiment by highlighting food access
and cost barriers for lower-income populations (Coveney and
O’Dwyer, 2009; Walker et al., 2010; Breyer and Voss-
Andreae, 2013). These previous studies suggest that the
purchase of higher-priced, healthier food items is inhibitive
for demographic groups of lower SES.

Taken together, these findings suggest that Latinx and Black
households are more likely to purchase cheaper, energy-dense
food items at higher proportions than White households. This
supports the present study results, which find that Latinx and
Black households have higher aggregate FCI$ rates in land,
GHG, and water compared to White households. Furthermore,
there are significant health implications of poor dietary
consumption patterns characterized by cheap, low-quality,
energy-dense foods. In a study that explored food availability
and access in Black communities, Odoms-Young et al. (2009)
found that minority populations are disproportionately at risk
for obesity compared to Whites. Human health findings like
the one aforementioned can be more directly explored with the
present study’s framework since it correlates FEW impacts
with SES on quantitative terms.

Policy recommendations for reducing FCIs need to be
cognizant of the differences in food consumption and spending
across demographic groups. While it is generally accepted that
reducing beef consumption can have significant environmental
benefits (Pelletier et al., 2010; Heller and Keoleian, 2014;
Tilman and Clark, 2014), our study shows that higher protein
consumption in Latinx and Black households correlate with
their lower SES or purchasing power. As such, shifts to similar
energy-dense, but less environmentally impactful protein
choices may be necessary to meet the calorific needs of these
populations. On the other hand, plant-based diets tend to be
less environmentally impactful than meat-based diets (Clark
and Tilman, 2017); so, getting more people to consume less
environmentally intense foods may require a shift in some
consumers’ preference toward meat, or may require asking
households to shift their purchases to more fish or plant-based
foods. However, switching to fish or plant-based foods can
present food accessibility challenges for households identified
as having lower SES such as those of the Black demographic
(Walker et al., 2010). This exemplifies why none of these
suggestions are easy. Nonetheless, the demographic and
SES-specific findings related to FEW impacts reveal a path
for improving the understanding of food-consumption and
-spending impacts on the environment. Furthermore, our study
findings facilitate the development of demographically specific
communication to address these concerns.

The present study has policy implications relevant to the
environment, racial equity, and human health. One policy
implication could manifest by incorporating FCI$ estimates
into educational materials for Supplemental Nutrition As-
sistance Program (SNAP) recipients. That is, FCI$ rates
could be highlighted as part of the USDA’s existing SNAP
Education (SNAP-Ed) program, which is an evidence-based
program that helps benefit recipients lead healthier lives. The
USDA could make FCI$ awareness a prerequisite for SNAP
benefits. Such a measure could positively affect the food-
consumption behavior of anyone informed by SNAP-Ed,
with a concentrated effect on Black, Latinx, and White SNAP
recipients. Of the total SNAP recipients, these demographic

groups represent 79.9% of 45.8 million people and 22.5
million households (USDA, 2016b). It follows that FCI$
awareness through SNAP-Ed could influence many to be
mindful of the environmental and human health impacts of
food choice and purchasing habits. This demographically
specific education could be provided to recipients who give
consent and identify as one of the three major demographic
groups (Black, Latinx, White).

Another policy implication could be to incentivize SNAP
recipients of a particular demographic to increase the pur-
chase of fish- and plant-based foods through increased
monetary benefits. Such an increase in benefits could play a
role in alleviating food access challenges for demographics
of lower SES.

A third policy implication could be to use demographically
specific FCI$ rates as part of USDA national dietary guide-
lines. Issues of food access and race are already a part of the
2015–2020 Dietary Guidelines, including suggestions to in-
centivize store development to increase healthy food access
and affordability for lower SES groups and improving or-
ganizational programming so that issues of food access are
seriously considered (USDA, 2015). Data and findings from
the present study could bolster this section of the national
dietary guidelines by highlighting how SES and FCI$ trends
support the sentiment of developing effective food access
incentives and educational programming.

Future research can use our methodological approach to
link nutritional intake, SES, and FEW impacts to yield
quantitative measures of human health as it relates to FEW
impact estimations. Examples of research questions worth
exploring are: how have demographic food intake patterns
changed over time and what economic and social influences
correlate with significant changes in food spending across
demographic groups? Similarly, how does relative con-
sumption of specific food items within food groups (e.g.,
chicken vs. beef) vary across demographic groups and what
are the related environmental and health implications?
Nonetheless, the path toward linking environmental impacts
like land, GHG emissions, and water with human health
outcomes is even more tangible than before.

Study limitations

There are key study limitations that should be considered
when assessing present study results and findings. First, using
mean values for FEW impact estimations and FCI calculations
can skew results, in that not considering the share of purchases
of less impactful to more impactful versions of foods (i.e.,
foods that are more land, GHG, or water intensive than others)
can hide more specific food-impact patterns across demo-
graphic groupings. For instance, land FEW-impact estimates
show that minimum beef rates (19.902 m2

kg
) are close to the rate

for pork (19 m2

kg
) (Bozeman et al., 2019). However, the maxi-

mum land FEW impact for beef is 71.002 m2

kg
. The present

study uses mean values as a basis for analysis such that beef
has a land FEW impact of 45.452 m2

kg
rather than using a

maximum and minimum value for analysis (refer to Table 1).
It follows that using average household size can hide

ranges within FCI calculations, even though sampling error
or range informatiom was not provided in the USBOLS
(2017) dataset for household sizes. Nonetheless, interesting
findings could emerge in a similar study where value ranges

772 BOZEMAN ET AL.

D
ow

nl
oa

de
d 

by
 7

4.
10

2.
54

.3
4 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
17

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



and overlaps are the analytical focus rather than statistically
significant means. In the present study, we chose to assess
applicable mean values using statistical significance to en-
sure the resultant FCI calculations were meaningful and not
due to chance alone. We determined this approach was es-
sential in framing an exploratory study of this kind.

Another study limitation is that the demographically spe-
cific food intake data is derived from year 2005 to 2010
surveys (USEPA FCID, 2018), whereas SES indicator values
are from year 2017 (USBOLS, 2017). It would be ideal to
have more recent food intake data across demographic groups
that fit into the present study’s framework.

It is also important to note the relationship between the
present study findings and those from Bozeman et al. (2019).
Bozeman et al. (2019) found that White eating patterns im-
pact the environment the greatest in GHG and water, while
Black eating patterns impact the environment the greatest in
land on a per-capita basis. The present study results and
findings suggest that Latinx and Black food spending affect
the environment the greatest as a function of FCI$ rate on a
per-household basis. These study findings should not be
compared directly since they differ in framing and method-
ology. Rather, the present study and Bozeman et al. (2019)
should be viewed as component studies that explore the FEW
nexus and demographics in different ways.

Summary

We explored how environmental impacts of food con-
sumption across Black, Latinx, and White demographics
correlate with household spending in the United States.
Grains, protein, dairy, fruits, and vegetables were identified
as major food groups for cradle-to-farm-gate land, GHG, and
water impacts. Impact expense rates were then calculated to
show how Black, Latinx, and White households affect the
physical environment through demographically specific food
consumption and purchasing behavior (i.e., FCI$s). Our
study yields statistically significant FCI$ rates for major U.S.
demographics by integrating SES with pertinent LCA find-
ings. Results show that Latinx household food purchasing
and consumption behavior tends to affect the environment
most for every dollar spent compared to Black and White
households, with aggregate FCI$ rates of 8.16 m2

USD
for land,

4.94 kg CO2eq
USD

for GHG, and 2203.92 L
USD

for water. Black
households closely follow with aggregate FCI$ rates of 7.80
m2

USD
for land, 4.46 kg CO2eq

USD
for GHG, and 2188.72 L

USD
for

water, whereas White households had lesser aggregate FCI$
rates than Latinx and Black households with 5.13 m2

USD
for

land, 4.26 kg CO2eq
USD

for GHG, and 1962.47 L
USD

for water.
Key findings suggest that the high impact expense rates for

Latinx and Black households are attributable to relatively low
average household income. That is, lower SES is associated
with the purchase of more cheaper, energy-dense foods as a
means to ward off feelings of insufficiency and scarcity.
Findings suggest that reducing food spending and con-
sumption of environmentally intense foods within the protein
and grains food groups could result in the highest conserva-
tion of cradle-to-farm-gate land and water resources, whereas
reducing dairy food spending and consumption could miti-
gate the most GHG emissions.

Our findings also suggest that different messaging relevant
to particular demographic groups may be necessary to en-

courage healthier and lower-impact dietary choices. These
findings and results are critical in providing practitioners,
policy makers, and researchers with policy-relevant insights
and data that influence environmental and racial equity
matters. Furthermore, these findings could facilitate studies
that link environmental impacts with human health given
further analysis.
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Appendix: Distinguishing Environmental Impacts of Household
Food-Spending Patterns Among U.S. Demographic Groups

Appendix Table A1. Race Reference for 2017
Socioeconomic Status Indicators

Race reference U.S. Black Latinx White

Black 13% 100% 2% 0%
White, Asian, and all other races 87% 0% 98% 100%
Latinx 14% 2% 100% 0%
Not Latinx 86% 98% 0% 100%
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Appendix Table A2. Annual Per-Household Food

Item Intake Across Demographic Groups

Food group
Food
item Demographic

Average
household
food intake

kg or L/year

Vegetables Broccoli Black 8.91
Latinx 6.29
White 9.76
U.S. 9.43

Green
Beans

Black 2.89
Latinx 4.16
White 4.73
U.S. 4.41

Lettuce Black 15.81
Latinx 13.92
White 20.42
U.S. 18.64

Tomatoes Black 44.00
Latinx 63.34
White 69.07
U.S. 65.01

Potatoes Black 61.77
Latinx 59.95
White 72.60
U.S. 69.34

Fruit Apples Black 53.78
Latinx 58.51
White 45.89
U.S. 49.02

Oranges Black 90.35
Latinx 107.22
White 72.00
U.S. 80.34

Cherries Black 6.18
Latinx 4.84
White 4.89
U.S. 4.84

Strawberries Black 3.83
Latinx 4.24
White 7.74
U.S. 6.61

Grapes Black 24.84
Latinx 18.22
White 28.36
U.S. 25.52

Blueberries Black 1.46
Latinx 2.19
White 5.09
U.S. 4.19

Protein Foods Soy Beans Black 41.57
Latinx 41.22
White 42.28
U.S. 42.34

Beef Black 38.82
Latinx 38.73
White 43.01
U.S. 41.58

Eggs Black 21.33
Latinx 22.84
White 19.83
U.S. 20.63

(continued)

Appendix Table A2. (Continued)

Food group
Food
item Demographic

Average
household
food intake

kg or L/year

Pork Black 20.50
Latinx 21.12
White 21.86
U.S. 21.55

Poultry Black 54.35
Latinx 46.23
White 41.30
U.S. 43.45

Almonds Black 0.39
Latinx 0.73
White 1.17
U.S. 1.01

Walnuts Black 1.42
Latinx 2.06
White 2.51
U.S. 2.37

Tilapia Black 13.92
Latinx 12.38
White 12.81
U.S. 13.44

Dairy Milk Black 166.17
Latinx 244.93
White 265.94
U.S. 248.02

Grains Rice Black 13.09
Latinx 19.54
White 11.06
U.S. 14.25

Maize Black 76.30
Latinx 74.26
White 69.04
U.S. 70.33

Wheat Black 82.60
Latinx 81.33
White 100.16
U.S. 93.71

Bolded values indicate the highest within-demographic group
value.
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Appendix Table A3. Per-Household FCI$ Rates for Socioeconomic Status Food Groups

SES food group Demographic Annual land FCI$ Annual GHG FCI$ Annual water FCI$

Grains Black 2.606 0.948 1360.939
Latinx 2.861 1.050 1402.471
White 1.007 0.793 1224.296

Protein Black 4.186 1.222 565.244
Latinx 4.317 1.332 599.909
White 3.286 1.207 540.366

Dairy Black 0.388 1.694 8.631
Latinx 0.470 2.053 10.462
White 0.424 1.849 9.423

Fruits Black 0.402 0.312 134.538
Latinx 0.341 0.273 103.514
White 0.237 0.186 101.071

Vegetables Black 0.223 0.281 119.364
Latinx 0.173 0.232 87.558
White 0.175 0.225 87.315
Totals
Black 7.805 4.457 2188.716
Latinx 8.162 4.940 2203.914
White 5.129 4.260 1962.471

Bolded values indicate the highest within-demographic group value.
FCI$, food-consumption impact per dollar spent; GHG, greenhouse gas; SES, socioeconomic status.

Appendix Table A4. Unadjusted Average

Annual Income

SES indicator category Demographic
Unadjusted

mean ($,USD)

Average income before taxes Black 53395.00
Latinx 57287.00
White 80174.00
U.S. 73573.00

Average income after taxes Black 48149.00
Latinx 53251.00
White 68268.00
U.S. 63606.00

Bolded values indicate the lowest within-demographic group
value. The U.S. category includes other demographic group values,
as well as Black, Latinx, and White values, as part of its mean and is
not a within-demographic group value. Furthermore, these data
come from USBOLS (2017).

Appendix Table A5. Sample Sizes for Annual

Food-Consumption Rates Across Demographics

Demographic N

Black 5,337
Latinx 7,869
White 10,249
U.S. 24,673

‘‘N’’ represents 2-day average, per-capita, food commodity mass
sample sizes as shown in USEPA FCID (2018). Sampling errors
and statistical analyses of basic food items, and their USEPA FCID
(2018) alignment, can be found in Bozeman et al. (2019).
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